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Since its first application more than 20 years ago the simulation of casting 
processes has been strongly developed. Today, simulation is established to 
predict casting quality and supports the day-to-day business in many 
production places. The search for improved foundry processes has been 
shifted from the shop floor into the computer. 
 
With increased computing power in recent years new possibilities have come 
up: It is possible to simulate quite a lot of variants of a casting process in 
comparatively short time. Autonomous computational optimization means that 
the software proposes the best combination of process parameters rather 
than only simulating a single operating point. The engineer enters the 
degrees of freedom for variation of the parameters and the appropriate goals 
to be achieved by the optimization instead of focussing on a particular 
process lay-out.      
 
In this paper the application to continuous steel casting processes is 
demonstrated: First, a reverse engineering method is applied to gain 
knowledge about boundary conditions for simulation of the mould. Afterwards 
an example for optimization of the casting process is shown: The required 
spread of spray cooling intensity in the various cooling zones to achieve a 
desired liquid pool depth and keep it stable is predicted.   
  
 
Process optimization by “one-dimensional search”  
 

Each production has to be optimized frequently because of economic factors 
and in order to ensure the best possible quality profile all the time. Uually, an 
easy approach to optimization is applied: During a one-dimensional search a 
number of tests and improvements (usually 3 to 4) are run through one after 
the other until finally acceptable results are achieved. Nobody knows whether 
really the optimum state has been reached or if further improvement would be 
possible. The lay-out of a strand cooling for example means to design a first 
candidate, check the strand quality and, if needed, further change the layout 
based on experience. This process is repeated until the quality of the cast 
steel strand is sufficient, see Fig. 1. The one-dimensional search is 
characterized by a low number of tests as well as by the danger to end in 
deadlocks. The specialist overcomes these difficulties with his experience: 
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Often, after a complete re-orientation of the search, solutions for problems 
are found that before seemed to be hopeless.  

 
In recent years, the efficiency of this procedure has increased dramatically: 
Often, costly “real life” tests are prevented by running a simulation. It is still a 
“trial and error” driven, iterative process, that requires an engineer’s 
interpretation and decision after any of the simulation runs. At the same time, 
the demands towards productivity and robustness of production of high-
quality products are increasing. The increased variety in grades and 
production range today makes it more difficult to transfer experiences to 
novel products. With more and more limited time until start of production 
there is an urgent need to eliminate the factor “trial and error” for the user. 
 
 

 
Fig 1: For conventional casting optimization a first process lay-out is made 
based on experience. The result of this is tested and will then be changed. 
This is repeated until a satisfying result is achieved.  
 
 
Autonomous computational optimization 
 
With autonomous computational optimization a new method to design the 
best possible casting process is available. A multitude of variants are 
simulated and automatically evaluated for in how far they fulfil targeted 
criteria.  
 
To achieve this, the MAGMASOFT® casting process simulation has been 
embedded into an optimization loop. After definition of optimization objectives 
(target criteria) and degrees of freedom this loop runs autonomously without 
interaction from the user. It is possible to focus on several maybe competing 
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objectives at the same time (e.g. depth of liquid pool, surface temperatures, 
segregations, cracks, yield, productivity). In order to take positive influence on 
these objectives, process parameters are varied (position and intensity of 
strand cooling, spraying nozzle layout, casting speed…), Fig. 2. 
 

 
Fig 2: With MAGMAfrontier the casting process simulation with 
MAGMASOFT is embedded into an optimization loop. During the optimization 
process no interaction with the user is required.  
 
The optimization program MAGMAfrontier is based on genetic algorithms. 
The first generation of variants is formed as a DOE (Design of Experience) 
out of the big number of possible variants. After that usually a number of 
generations is run through one after the other. Based on the laws of evolution 
positive characteristics of the proposed variants survive that process. Finally, 
the best possible compromise between the competing objectives is found.  
 
During the optimization process quantitative information concerning the 
influence of particular process parameters is acquired. This can be used for 
sensitivity studies. Herewith the specialist learns about his process. “Trial and 
error” now have been shifted into the computer. The second generation of 
casting simulation proposes optimum parameter combinations or the best 
possible layout rather than only simulating a given state of the art [1,2,3].   
 
 
 
 
Project with continuous steel bloom casting process 
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In this project the production of a carbon steel bloom with a quadratic square 
section of 160 x 160 mm was looked at. Six cooling zones with different heat 
transfer coefficients in each zone were modelled.  
 
A typical casting speed is 3 m/min which was kept fixed during this 
investigation. Results of the influence of casting speeds to the depth of the 
liquid pool were already shown in earlier publications [4]. For the first part of 
the project the focus was on the heat withdrawal in the mould. With the help 
of measured temperatures in the mould a heat transfer coefficient should be 
determined by autonomous computational optimization. 
 
Reverse engineering of heat transfer coefficient 
 
In order to carry out a simulation, knowledge about some boundary 
conditions is needed. Heat transfers, however, that are characteristic for the 
contact between the water cooled copper mould and the strand can not be 
measured directly. 
The best possible way to calculate heat transfer coefficients is to retrieve 
them from a comparison between measured and simulated temperature 
plots. Using autonomous computational optimization the heat transfers are 
modified until the difference between measurement and calculation is 
minimized. This procedure is called inverse optimization. 
 
In this project thermocouples have been placed at different positions in the 
model, one control point in the strand near to the surface and four control 
points in uniform distances within the mould. After that the optimization 
objective function were defined. In the described example the difference 
between measured and simulated temperatures should be minimized by 
variations of heat transfer coefficients within the mould. Therefore the 
measured curves have to be selected.  

The heat transfer coefficients between mould and strand and its 
characteristics can be described by just a few parameters. These parameters 
are varied by the optimization algorithm until a minimum deviation between 
measured and calculated temperature/time plots is reached. The best 
possible fit between simulation and measurements is then attained.  
 
In Fig. 3 the curvature of heat transfer coefficient over the length of the mold 
is shown. During the particular castings the melt level in the mould was at 
around 150 mm. Therefore, the shown starting point at 6000 W/m2K is only 
an approximation, but in general the curve has a shape like this. The heat 
transfer should decrease from the top to the bottom of the mould.  
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Fig. 3: Typical plot of heat transfers between a water cooled copper mould 
and a strand. This characteristic curve plot can be described by a small 
number of parameters. 
 
As expected before, the deviation between measurement and simulation was 
quite big for the first simulated variants of the heat transfer coefficients, Fig. 
4. After the optimization the measured and the calculated temperature plots 
show a good matching, Fig. 5: Here, the heat transfer coefficients have been 
identified well. For the variant with the heat transfer coefficient from Fig. 5 the 
strand temperature in the mould is distributed as shown in Fig. 6.  The 
corresponding surface temperatures of the mould are visualised in Fig. 7. The 
surface temperature of the mould decreases as expected with formation of 
the solidified shell. 
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Fig. 4: Comparison of measured (orange) and calculated (blue) temperature 
plots at the beginning of the optimization. On the right the corresponding heat 
transfer coefficient is visualized as it varies over the length of the mould. 
 
 

 

Fig. 5: The two temperature curves are now in a good agreement. The 
corresponding heat transfer coefficient is shown on the right. 
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Fig. 6: Temperature distribution of the strand in the mould (top view) at three 
different locations relating to the top edge of the mould with a total length of 
1000 mm. The shown temperature distribution is the result of a simulation 
with the optimized heat transfer coefficient. 
 

 

Fig. 7: Temperature distribution at the mould surface with the optimized heat 
transfer coefficient. In order to evaluate calculated mould temperatures the 
cast strand can be hidden, so that the temperatures of the mould itself are 
shown. Here, only half of the mould is sketched so that it is possible to look 
into it and see the temperatures of the inner walls.  
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Process optimization 
 
The heat transfer coefficients calculated in the inverse optimization now are 
used for process optimization. In the second part of the project best possible 
secondary strand cooling conditions should be worked out to ensure that the 
liquid pool depth is at the desired value and remains stable. The optimization 
should help to set the depth of the liquid pool as close to 16.5 meters as 
possible. The position of the pool tip was set by variation of the 
characteristics of the secondary cooling zones, Fig. 8. 
 
The intensity of spray cooling was varied for the different zones. In the 
simulation model this was performed by variation of the different heat transfer 
coefficients. With help of the autonomous optimization the spread of cooling 
intensity that is required to set liquid pool depth to the desired value was 
worked out.  
 
 

 

Fig. 8: The secondary cooling is partitioned into 6 different zones; the left 
picture shows the cooling zones in total. 
 
 
With the variety of simulation results that belong to the different combinations 
of heat transfer coefficients it is possible to investigate the influence of each 
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particular cooling zone on the depth of the liquid pool. The sensitivity analysis 
gives a measure of the influence of each zone by a percentage value – 100% 
for a particular zone means that it has a significant influence, low values in 
contrary mean that the influence is rather low.   
 
As can be seen in Fig. 9, zone 3 has the biggest influence on liquid pool 
depth and zone 6 (red colour) is nearly without influence. It could therefore be 
neglected.  
 

 

Fig. 9: Sensitivity analysis of the influence of changing the heat transfer in 
the different zones on the objective to reach a desired liquid pool depth. The 
percentage value gives information about how much influence each particular 
parameter has on the result. Most sensitive is Zone 3. Zone 6 does not show 
any correlation with liquid pool depth. 
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Conclusions 
 
An example for the application of autonomous computational optimization to 
the continuous steel casting process has been shown.   
 
At first, heat transfer coefficients between the water cooled copper mould and 
the strand were predicted by fitting calculated to measured temperature 
curves. The results of this inverse optimization were then used to optimize 
the casting process with the aim to attain the best possible liquid pool depth. 
Based on information about the position of the different cooling zones the 
particular zones that have significant influence on the position of the pool tip 
were identified. The required spread of cooling intensity over the strand 
length to set the pool depth to the desired value was then worked out. 
 
By switching off the factor “trial and error” the engineer gets the chance to 
develop his processes with maximum possible quality and efficiency at the 
same time. He attains knowledge about the influence and interaction of the 
process parameters. The possibilities that arise from this are just at the 
beginning – it is the second generation of process simulation.    
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